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Abstract. Solutions of systems of linear equations or linear recurrence relations are 
obtained in the form of series of products of continued fractions. Simple rules are presented 
for obtaining the series for any given problem. The continued fraction expansion is superior 
to ordinary perturbation theory; each continued fraction represents a partial summation of 
the ordinary perturbation series. The use of the method in eigenvalue problems, and its 
possible application in numerical analysis, is discussed. 

1. Introduction 

A continued fraction formalism of the quantum mechanical eigenvalue problem and of 
the theory of scattering processes has been given by Feenberg (1948a, b) who also 
discussed its relation to the Rayleigh-Schrodinger and Wigner-Brillouin perturbation 
series (Feenberg 1958). Different methods of obtaining Feenberg’s results were 
described by Richards (1948) and Feshbach (1948) (see also Morse and Feshbach 
1953). Independently, continued fraction expressions for the transition probabilities in 
quantum mechanical systems were given by Swain (1975a, to be referred to as I), where 
a diagrammatic interpretation of the solutions was also described (note that this 
treatment includes the solution to the eigenvalue problem), and by Gontier eta1 (1975). 
A recent paper dealing with the application of continued fraction methods to the 
calculation of thermodynamic Green functions has been published by Bowen (1975). 
Here, as in I, we do not discuss questions of convergence, but we note that Masson 
(1970) has proved a theorem which assures the convergence of the continued fraction 
solutions for an extremely wide class of Hamiltonians (see also Bowen 1975). 

Previously, the majority of applications of continued fraction methods have been of 
a formal nature, perhaps because the complexity of the summation restrictions in the 
solutions has discouraged their use in specific problems. However, a feature of the 
treatment given in I is that rather than direct substitution into these complicated 
expressions, the use of a simple set of rules is advocated which may be used to write 
down the solutions to any specified order. In fact, these rules are simpler than those 
used in modern quantum field theory (e.g. Abrikosov et a1 1963). Examples of the 
application of this method to specific problems in quantum optics have already been 
given in I, Swain (1975b), and McClean and Swain (1976). 

In this paper we demonstrate that continued fraction solutions of this type may be 
found generally to systems of linear equations, whether in matrix equation or difference 
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equation form, and that they are suitable both for analytic or numerical computation. 
Of course, the previously described solutions to quantum mechanical problems are a 
special case of this general treatment. 

One area in which continued fraction solutions to linear three-term recurrence 
relations have proved very useful recently is the study of the behaviour of two-level 
atoms in oscillating electromagnetic fields (e.g. Autler and Townes 1955, Stenholm 
1972, Swain 1973a, b, Stenholm and Aminoff 1973, Tsukada and Ogawa 1973, Swain 
1974). These three-term recurrence relations may be solved by elementary methods, 
and the application of the more general methods to be described is not essential. The 
continued fraction solutions are more useful than ordinary perturbation solutions in 
that they are valid at high field strengths or in the vicinity of a resonance. For example, 
in Swain (1974) the perturbation series for the three-quantum resonance is apparently 
divergent at high field strengths, whereas a low-order truncation to the continued 
fraction solution gives the position of the resonance accurately over the whole range of 
field strengths. However, several authors (Stenholm 1972, Tsukada er a1 1974) have 
commented on the difficulty of obtaining solutions of a similar type for more general 
conditions (multi-level atoms, non-orthogonal fields, etc). The methods to be described 
in this paper may be applied straightforwardly to such situations. We give simple rules 
for obtaining solutions to systems of linear equations or linear difference equations of 
arbitrary order. Such systems are manifestly of very frequent occurrence in theoretical 
physics. We emphasize again that this approach is much superior to ordinary perturba- 
tion theory; the continued fractions may be considered to be obtained by summing 
certain terms of the ordinary perturbation series to all orders. 

In § 2 we consider the problem of obtaining the solution to a system of linear 
inhomogeneous equations in matrix form. The solutions are founded on general 
expansions for a determinant and its complementary minors. In 0 3 we consider the 
form of the solutions when the linear equations are in difference equation form. Rules 
for obtaining the solutions in both cases are given in § 4. In § 5 ,  the problem of 
homogeneous linear equations is considered. 

2. Inversion of the matrix equations 

We consider first of all the problem of finding the N variables xi, j = 1,2,  . . . N where 
these variables satisfy the N linearly independent equations 

N 

j =  1 
aIjxi = bj, i = 1 , 2  , . . . ,  N. 

(If necessary, N may be allowed to approach infinity.) The elements aij form a square 
matrix whose determinant we denote by A ( A  # 0). The formal solution to this problem 
is given in books on linear algebra (see e.g. Margenau and Murphy 1956) and may be 
written as 

j =  1 ,2 , .  . . , N. 
x i =  1 N ( - 1 ) J + k L  b Ak’ 

k = l  A ’  

where A k’ is the determinant which is obtained from A by removing the k th row and j th  
column. 
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In order to obtain a continued fraction expression for xj we need to make use of the 
relations 

A = a,&] - 1 aIaaajda3l + 1 a,aaapap,da9s3i 
Q # I  a # j P # a , j  

and, for k # j ,  

A‘] = ( - l ) k + ~ - l ( a l k d l ~ k  - alaaalda,l’k + a # j , k  c p # a , j , k  alaaapapk&a,PJ’k + . . .) (4) 

where &asp, denotes the determinant obtained from A by removing the a th, the 
Pth,  . . . and the vth rows and columns. Clearly the order in which the superscripts 

are written is of no significance. Expressions (3)  and (4) may be a , & . . . ,  
established by repeated use of the Cauchy expansion of a determinant (see e.g. Aitken 
1956). The sums over cy, p, . . . etc extend from 1 to N, but this has not been written 
in explicitly. Expressions ( 3 )  and (4) give the expansion of a determinant in terms of 
determinants of successively lower orders. Note that & 1 3 2 3 3 3 , ,  3 N =  - 1 .  

o # j , k  

in &“.P. .%U 

On substituting from (4) into (2) we obtain 

In order to manipulate this into a form suitable for obtaining approximate solutions it is 
convenient to introduce the 9 functions by the definitions 

From the expression ( 3 )  we can obtain an expansion for 9J 

where we have made use of relations of the type 

However, we note that this decomposition is not unique; we could have written 

or in fact any permutation of the subscripts cy, p, y providing that the superscripts are 
changed accordingly. However, at a later stage, in order to give an interpretation of the 
formulae, we will find it convenient to define a standard order. An expansion for 
g % P , . . . , P  is easily obtained from (7) (with j = v) by observing that, in addition to the vth 
row and column being excluded, the a th ,  pth,  . . . and vth rows and columns are also 
excluded. Consequently, 
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We note that we could achieve a simpler notation by omitting the conditions on the 
sums providing it is understood that no terms are allowed to appear in which the 
subscript of any 9 function is equal to any of the superscripts of that 9 function. We 
indicate this restriction by starring the sums (cf Feenberg 1948a). 

Making use of expressions similar to (8) in (5) we finally obtain the expansion 

An explicit expression for a 9 function (say gj) ,  may be obtained by repeatedly 
using expression (10) in expression (7). The result is that the 9 functions in general may 
be expressed as the sums of products of continued fractions. For a finite value of N, the 
series for the 9 functions given in (10) and (7) and for xi given in (1 1) terminate, and the 
resulting expressions are exact. However, if N is infinite, the series and continued 
fractions are also infinite, and usually approximations have to be introduced to 
terminate them and so obtain approximate solutions. Examples of such truncation 
procedures as applied to quantum mechanical problems have been given in I, Swain 
(1974, 1975b), and McClean and Swain (1976). 

The expressions (7), (10) and (1 1) for the solutions are undeniably complicated, this 
perhaps being the reason why continued fraction methods have not been applied as 
widely as they might and it is preferable to introduce procedures other than direct 
substitution to obtain the solutions such as the set of rules given in I for the case of 
time-dependent quantum mechanical perturbation theory. However, before we do this 
it is convenient to look first at the problem of linear difference equations, as the method 
of treatment is closely analogous to that given in the preceding discussion. 

3. The difference equations 

We consider a set of (2v + 1)-term linear inhomogeneous difference equations of the 
form 

f C ~ ( ~ ) X , + ~  = b, 
]=-U 

where i may take on all negative and positive integer values, or perhaps the positive 
integer values only, when we set X I  = 0 for 1 S O .  (Expression (12) is quite general; to 
treat a four-term difference equation for example we may set v = 2 and take ~ - ~ ( i )  = 0, 
all i.) The correspondence with the matrix equation (1) (for N infinite) is most obvious 
for the case where i takes on only positive integer values. If we set i + j + j ,  then (12) 
may be written in the form (1) if 

j = i - v , i - v + l ,  . . .  i + v - l , i + v  

j < i - v  or j > i + v .  
a. .  = 

From (1 I), the general solution may be written as 
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with the 9 functions given by, e.g, 

Note that the solutions (14) and (15) which we have just obtained are the ones which 
satisfy 

xj + - 4 as c i ( j ) + O  for i ZO, cdi) 
so that these solutions are particularly useful if the ‘off-diagonal’ elements ci( j ) ,  i f 0, 
are small compared to the diagonal elements co( j ) .  

4. Rules for obtaining the solutions 

Rather than substituting into the complicated expressions (lo), ( l l ) ,  (14) and (15) for 
the xi it is much simpler to develop a set of rules which give the solution directly. It is 
convenient to introduce the suggestive terms ‘state’ for the subscripts-e.g. the suffix k 
in x k  is referred to as the state k ,  and ‘transition strength’ for the off-diagonal matrix 
elements aij between states i and j (or ck ( j )  for transitions between states j + k and j in 
the difference equation case). 

To consider how to interpret the equations let us put j = 1 in (1 1) and consider the 
first few terms 

We may interpret this equation in the following way: the first contribution to xl, b1 /a1 ,  
is comprised of the ‘probability’, 61, that the system is initially in the state 1 times the 
probability that it remains there, 9;’. Hence 9;’ may be considered as a kind of 
propagator for the state 1. The second term is comprised of the probability that the 
system is initially in the state 2 (state 3 ,  etc) times the probability that under the 
influence of the ‘interaction’ (whose strength is measured by the off-diagonal element 
aZ1) the system makes a transition from state 2 to state 1 (state 3, etc to state 1). Between 
the times when the interaction acts the system propagates in states 2 and then state 1. 
Similarly, the third term I epresents the probability that the system was initially in state 
3 times the probability that it ends up in state 1 by proceeding through the intermediate 
state 2. 

Thus it is convenient to picture the various contributions to xi as arising from 
processes by which the system proceeds from one state to another under the influence of 
the ‘interaction’. Thus for xl, the processes shown explicitly in (17) would be 

b3 
3 3 1  . . . .  first order 

b3 b4 
3 a 3 2 - 2  -3 1. 4 - 2 (z21, 1, . . .  second order 
9 :*’ 9; 9 1  9 : , 2  9; 9 1  
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and so on. It is natural to associate the transition strengths a,., propagators 97i and initial 
weightings bk as shown in the diagrams. Note that the only processes which contribute 
to x j  are those in which the states are all different. Such processes we shall refer to as 
irreducible. (We allow the possibility of the initial and final states being the same.) The 
order of a process is defined to be the number of times a transition strength appears in 
that process. 

Consider now the 97 functions (for example 97:,‘)>. From (10) the first few contribu- 
tions are 

Apart from the first term, these contributions may be considered as arising from the 
processes 

a32 3- 2 
971:’3,4 

a23 - 3, a35 3- ‘ 5  
9;33x4 

a53 -3 , . . .  

A very similar interpretation may be given for the difference equation case, if now 

Hence we formulate the following rules for obtaining solutions to linear equations. 
the interaction strength between two states k + 1 is taken to be C I - k ( k ) .  

Rule 1 .  The series for Xj  

( a )  Write down all the states which are connected irreducibly to the state j up to and 
including the order being considered. Thus for a five-term difference equation, with 
xl = 0 for f S O ,  the state j is connected to states jf 1, j r t 2  so that for j = 2 the tree 
diagram including processes up to second order is 

( b )  with each transition k + 1 associate the  interaction strength akl (or ~ , - ~ ( k )  for 
difference equations). 
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(c) With each state m in a process associate the factor 1/23;.) where the states j ,  . . . , 1 
are the ones which precede m in the process. 

( d )  With the terminal state n associate the factor b,. 

For each process, take the product of all these factors, together with the factor (-l)K 
where K is the order of the process, and add the contributions of all the processes 
considered to the zero-order contribution bi/9,. Thus the contributions of the first- 
order processes shown in (19) are 

9; 9 2  9: 9 2  9 2  

-1 . c-1(2) -1 . c1(2) -1 . c2(2) 
9 2 9 :  9 2 9 6 :  9 2 9 :  

and the contributions of the second-order processes may be similarly calculated. Hence 
the diagram (19) gives the following expression for x2: 

Rule 2. The series for 9 i . I  

( a )  To calculate the Kth order contribution to 9;' write down all the irreducible, 
exclusiue processes which take one from the state m through ( k  - 1) intermediate states 
and back to the state m. An exclusive process for 9k. ' i s  one in which the statesj, . . . , 1 
which appear as superscripts are not allowed to participate. Referring again to our 
example of the five-term difference equation, the second- and third-order contributions 
to e.g. 9:~' are 

Note that the conditions of exclusivity and irreducibility greatly reduce the number of 
third-order processes. 

(b) With each transition k + 1 associate the factor akl (or C l - k ( k ) ) ,  and with each 
intermediate state r (i.e. excluding initial and final state) associate the factor 1/9/ .'mn-q 

where the states n . . . q are the ones which recede r in the process. Taking the product 
of all these factors together with (-l)K'Pgives the contribution of a process. The 
contributions of all the second-, third-, . . . , Kth-order contributions are then added to 
the zeroth-order contribution amm (or c o ( m ) ) .  
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Thus the diagrams (22) lead to the expression 

The 9 functions which appear in the denominators of expression (23) may be 
similarly calculated to some specified order using rule 2. 

We do not give further examples of applications of these rules here, as applications 
in the special case of quantum mechanical problems have been discussed in I, Swain 
(1975b) and McClean and Swain (1976). Also the continued fraction solutions 
obtained in e.g. Autler and Townes (1955), Stenholm (1972), Stenholm and Aminoff 
(1973), Tsukada and Ogawa (1973), and Smithers and Lu (1974) may be written down 
very easily by straightforward application of these rules. 

A comment on the possible application of this method to numerical calculations is in 
order. In the great majority of problems which deal with matrices of relatively low 
order, one wants all the components of the vector x which is the solution of (1). For 
such a calculation, the present method would be inferior to conventional methods, such 
as Gaussian elimination (see e.g. Fox 1964), for although it has the advantages that the 
elements of the matrix are not changed at each step of the calculation, and there are no 
problems analogous to the choice of pivot, the continued fraction method gives only one 
particular component, xj-say, of the solution x. The situation is different if, for 
example, the matrix is a function of a parameter, 5, and one wants to calculate a 
particular xi(&) for several values of this parameter. The present method is then more 
economical than the conventional ones. For such an application as this, the matrix 
involved is likely to be large and sparse-and in this circumstance the continued fraction 
expressions would be particularly simple. Large, sparse matrices frequently arise when 
a problem has been expressed in difference equation form. 

The method could be used for an infinite matrix if, say, the off-diagonal elements 
were sufficiently small compared to the diagonal ones to ensure convergence of xi. Then 
the series and continued fractions in the solutions (11) or (14) could be truncated at a 
stage appropriate to a pre-determined accuracy for xi. 

5. Homogeneous linear equations 

Consider the set of linear homogeneous equations 

c d,Y, = 0, 
i 

i = 1 , 2 , .  . . 

If we divide each equation in the set by one of the y's-say y k ,  then we obtain 

This is of the same form as (1) if we set 
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and so we can solve for the ratios y i / y k  using the rules described in 0 4. However, the 
solutions obtained will only be consistent if 

de t a i j=A=O.  (27) 

If the zeros of d’ do not occur at the same positions of those of A, expression (26) is 
equivalent to A/&’ = 0, or, using the expansion (3), to 

An important class of problems of this type is the eigenvalue problem, 

(29) det(azj -As,) = 0 

or, using the expansion (27), 

where the 9(A)’s are obtained from the corresponding 9 functions by replacing every 
diagonal element all by all -A. 

Expression (30) provides the basis of a numerical method for determining eigen- 
values. For example, consider 

. . .  I 1 a11-A a12 a13 

a21 a 2 2 - A  a23 . . .  I = O .  
a31 a32 a33-A . . .  
. . .  . . .  . . .  

In many problems, the diagonal elements will be much larger than the off-diagonal 
elements, in which case a zeroth approximation to the eigenvalues is 

j =  1 , 2 , .  . . . (32) A = a . .  
I 11’ 

Suppose we wanted a value for the eigenvalue near A I = a1 1 .  Then from (30), we have 

. . .  - a12a21 - a13a31 all--A - 
a23a32 a32a23 aZ2-A  - a33-A - 

a33-h - . . . aZ2-A - . . . 

a23a32 ~ 3 4 ~ 4 3  az2-A - - . . .) - - ...) a33-A - . . . a44-A - . , . 

(33) 
a13a32a21 

-. . .) 424~42 

a44-A - . . . 
a32a23 - . . .) ( a22 - A - 

+(a,,--h - az2-A - . . . 

which may be solved iteratively for the A ’s. Thus the first approximation gives 

. . .  (34) - al2a2l al3a31 A = a l l -  - 
a22-a11 a33-all 

which may be used as a trial solution in obtaining the second approximation, and so on. 
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In the case of degeneracy (say ~2~ = all), instead of (34) it is necessary to take the first 
approximation to x1 to be given by one of the roots of the quadratic 

and similarly for the higher iterations. The idea is to treat the roots near A = a l l  and 
A = a22 as being of equal importance. 

An example of a situation where eigenvalues have been found numerically and 
analytically by such methods is provided by Swain (1974), and analytically by McClean 
and Swain (1976). 

We conclude by briefly discussing some of the numerical aspects of this method of 
finding eigenvalues. It is an iterative method of the form 

, + I n ) = f ( ~ I n - ' ) )  (36) 

I f ' (A i ) l<  1 (37) 

and so the usual condition for convergence of the iterative approach, namely 

applies, where A, is the exact value of the desired root. Thus if a first approximation to A, 
can be found, the present method may be used to find all the eigenvalues for which 
condition (37) holds. In the conventional iterative methods, it is usually much simpler 
to find the largest or the smallest eigenvalue than a general one. Obviously, the smaller 
the number of terms in the series in expression (33), the simpler the functionf(A), and so 
once again we would expect this method to be particularly rapid for sparse matrices (or 
equivalently, recurrence relations with relatively few terms). Thus for a tridiagonal 
matrix, the function f ( A )  is just a single continued fraction, and the iterative procedure 
is very simple. This was the case for the system investigated in Swain (1974). For a 
pentadiagonal matrix, f ( A )  would be the sum of two terms, the first a simple continued 
fraction, the second a product of two continued fractions so that the procedure is slightly 
more complicated. 
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